8. Map Color and Other Channels
Design Choice for Mapping → Colors
Rods and Cones
- Rods
- 막대세포
- active at low light levels
- one wavelength sensitivity function
- 100 million rod receptors
- Cones
- 원뿔세포
- 3 cone response signals
- three types
- 6 million
- focused in the center of vision (fovea)
Terms
Luminance (조도)
- Physically measured amount of light (lux로 측정되는 그것)
Brightness (밝기)
- Perceived amount of light
- non-linear (adaptation, contrast)
Lightness (명도)
- Perceived refelctance of a surface
- depends on a reference light
- white surface is light, black surface is dark
Hue
- color
Saturation
- Perceived intensity of specific color
- vividness
We change meters
eye sensitive over 9 orders of magnitude
5 orders of magnitude → room ~ sunlight
- Receptor bleach and become less sensitive
→ We’re not light meters. 우리는 Meter를 바꾼다.
- 신경체계는 신호의 차이를 계산한다.
- 정확한 숫자 값을 계산하지 않는다.
Color Vision
Rod: black-white. Low light settings
Cone: color, normal light setting
- Three opponent channel
- Red-green
- Blue-yellow
- Black-white
- Luminance: high resolution
- Chromaticity: low resolution
Color Space
Mathematical ways to describe color
- RGB: computationally easy. poor mechanics
- HSL: Hue, Saturation, Lightness
- Pseudo-perceptual
- HSV: Hue Saturation Value(for gray scale)
- CIEXYZ → 인간의 원뿔세포를 모델링하여, 인간이 인식 가능한 색상을 표현하기 위한 것이 있음.
Three Independent Channel
Retina contains three type of color receptors with different absorption spectra
Input * Con → Three Values
자극 그래프와 각 response 곡선을 곱하고, 적분하여 전체 값을 구한다.
Ambiguity in trichromacy
→ input stimuli가 달라도 최종 인식된 값을 같게 만들 수 있다.
matamerism.
Model of Standard Observer
Color matching experiment
이 자극이면 평균적으로 이런 r,g,b를 갖더라.
→ Color matching function 정의.
Primary Colors of Light
- Red, green and blue (원뿔세포의 종류에 따라 r, g, b에 가까운 색에 반응하기 때문)
- L cones: 65%
- M cones: 33%
- S cones: 2%
→ Color matching experiment에서 R을 음수로 해야하는 경우가 있음. (반대쪽에 R쏴주는 식으로 구현)
CIERGB Color System
- Based on experimental results
- R, G, B color를 사용하면 negative primary color를 사용하는 구간이 존재한다.
→ Normalize
경계는 단색광. (보라색 제외)
사실 이 map은 perceptually uniform하지 않다.
→ equally size step appear equal to our visual systems. (CIElab, CIEluv)
Color Space
HSL: popular color space.
- pseudo-perceptual
- L is different from true luminance
→ L_a_n*
좀 더 perceptual한 것을 반영.
Color Theory
Luminance: physical light
- Brightness: Perceptual light
Saturation: Perceived intensity of specific color
Hue: Wavelength
Luminance
- As magnitude channel?
- Suitable for ordered data types
- But not accurate → quantitative에 부적합함.
- 많아야 5개임.
- resolving detail을 위해 밝기 대비.
- luminance가 비슷하면 글도 안읽힘. 3:1은 기본이고, 작은 텍스트라면 10:1
→ Luminance is different from brightness
- Brightness(밝기)는 인식된 것임. context와 환경에 강한 영향.
Saturation
Magnitude of saturation
- Low accuracy. 3단계 정도.
크기 채널과 관련 있음
- 사이즈가 찾을 때 saturation 알기 어려움
- 밝고, 선명한 컬러는 작은 영역에
- 흐린 파스텔 톤은 넓은 영역에
Hue
as an identity channel
- categorical data, grouping에 효과적.
- Spatial position 다음으로 효과적임 (nominal 한정)
- 특정 순서 없음. (빨주노초파남보는 학습된 것임)
- 크기 챈널과 역시 인터랙션함
- 작으면 색깔 안보임
- Continuous region에서 fine distinctions.
- discontinuous에서는 lower accuracy. 약 6~7레벨
Cross-Cultural color naming
→ consistent across culture
white/black → red → ( green or yellow ) → blue → brown → ..
Color Categories
Task: Name the colors!
Only 8 hues named out of 210 colors. Small # of labels.
Color Coding
Large areas: low sat. enough
Small areas: high sat is needed.
→ Break isoluminance with borders!
Must have luminance contrast with background for details.
Transparency
Interacts with other three channels
- luminance, saturation, (hue). 투명도 바꾸면 이것도 사실상 바뀌는 것임.
- Superimposed layers에 자주 사용.
- glassmorphism도 이와 유사한 듯.
Colormaps
speicifies a mapping between color and value
- Categorical
- Ordered (sequential, diverging)
- Continuous
- Segmented
Color Brewer
- Sequential scheme
- dark for high
- Diverging scheme
- mid-range critical values and extremes at both ends of the data range
- Qualitative scheme
- difference between class
Categorical Colormap
- Encode categories at colors
- 6 ~12 color max.
Difficulties in categorical colormaps
→ color should be close in luminance (major difference in salience, ensure against background)
→ color should be different in luminance (distinguished even in black and white, color blind)
Resolve
- Distinguish bars in large region next to each other. vs distinguising non contiguous small regions
→ not enough colors?
- reduce # of bins
- Use additional visual channels
Ordered Colormap
Rainbow colormap is poor. 😟
- Diverging: Two hues at end points, with neutral at midpoint
- Sequential: Grayscale / Control saturation and brightness og single hue
How many hues to use in ordered colormaps?
→ Depends on what level should be emphasized (high, mid, low…)
- Many hues → Mid-level neighborhood structures are emphasized.
- Low-frequency are highlighted
- segmentation
- Easily discuss subranges
- Low-frequency are highlighted
- Two hues (diverging) → High-level structures are emphasized
- Continuity
- Diverging color map
Again, Rainbow colormap is poor!
easily namable color…but
- Hues don’t have implicit perceptual order
- Scale is not perceptually linear.
Fine detailcan not be perceived with only hues
→ 사실 노란색 부분이 의미 없을 수 있다.
→ 데이터 semantic 구조와, perception 구조가 다를 수 있다.
따라서, 단조 증가 luminance colormap을 사용하고, multiple hue를 semantic에 맞게 사용하자.
- popular interpolation은 perceptually nonlinear하다
- 물론 이걸 linear하게 바꾼 연구는 있지만, 칙칙해서 안쓴다.
Then how to use?
- Segmented rainbow colormaps are good categorical data.
- Deliberately bin the data explicitly
- or let eyes create bins
Color Deficiency
- Deuteranope (green defict)
- Protanope (red-green)
- Tritanope (blue-yellow)
Why color blindness?
→ red green, yellow blue, black white 고장나기 쉬움
- Most colorblind는 적록색맹이다. red-green color scheme을 쓰지 말자.
Size Channel
- effective for ordered data
- Affect most channels
- saturation, lhue
- shape
- orientation
- 길이는 정확한, 넓이 부피는 부정확함
- 더 큰 채널은 subsumes함
Angle Channel
- Orientation of a mark
- Sequential, diverging, cyclic
- Accuracy is not uniform!
- vertical, horizontal, diagonal은 정확함
- 하지만, 다른건 아주 형편이 없음
이런 orientation resolution은 45도일 때 최대임. 즉, 90도에 가까이 하면 이게 올라가는지 내려가는지 알기 어려움. aspect ratio가 중요하다 이말이다.
Curvature, Shape Channel
- Curvature: 아주 부정확함. 쓰지 마라.
- Shape:
- point and line 위에서 identity channel로 작동 가능
- size와 shape에 strong interaction
Motion Channel
- Direction , velocity, frequency
- Salient, separable from other states
- Draws too much attention.
- 그래서 bi-state로 쓰는게 좋음. (움직인다, 안움직인다)
- Draws too much attention.
- Used for
highlighting- blinking (의료 도메인에서 변화 파악)
- transitory vs ongoing
Texture and Stippling Channel
Texture
- Very small-scale pattenrs
- Categorical attributes (order도 가능.. density 조절하면 됨)
Stippling
- Fill in regions of drawing with small strokes
- Used at older printing tech. (점묘화 같음)