4. Task Abstraction
4. Task Abstraction
Why abstract Task?
domain-specific 한 방법보다는 abstract 하게 task를 고려해야한다.
→ 그렇지 않으면, 도메인마다 너무 task가 달라짐.
Actions
- High-level: Analyze
- Mid-level: Search
- Low-level: Query
hierarchical하게 나눠짐. 각 수준에 따른 선택은 독립적이며, 모든 action은 각 3개의 수준에서 설명가능하다.
High-level: Analyze
Consume
(1) Discover
- Find new knowledge that is not previously known
generatenew hypothesis, orverifyexisting hypothesis.
- For Scientific inquiry
(2) Present (=explain)
- The communication of information that is already understood (보고용)
- e.g. Infographic
- Output of discover → input of present
(3) Enjoy
- Motivated by user enjoyment
- Casual
Produce
(1) Annotate (=tag)
- attaches temporary info
(2) Record
- save or capture as persistent
(3) Derive (=transform)
- To produce new data elements based on existing elements
- Changing type of data (aggregation)
- transform with additional info
- using arithmetic/statistic/logical operations
→ Do not draw what you are given
Mid-level (Search)
high level을 수행하려면 먼저 search를 수행해야함
| Target Known | Target Unknown | |
|---|---|---|
| Location Known | Lookup | Browse |
| Location Unknown | Locate | Explore |
Low-level (Query)
target을 search를 통해 찾았다면, QUERY해야힘.
ex. 선거 결과
(1) Identify
- 서울 관악구의 선거 결과 확인
(2) Compare
- 서울 관악구와 동작구의 결과 비교
(3) Summarize / Overview
- 전체적인 투표 결과 분포 확인
Targets
All-data level
(1) Trends (=patterns)
- high-level pattern
- increase, decrease…
(2) Outliers
(3) Features
- Particular structures of interest
- Task-dependent definition
- e.g. clusters
Attribute Level
(1) One attribute
- Individual values
- extremes
(2) Multiple attributes
- Dependency (인과관계)
- association
- Correlation (상관관계)
- Similarity
For specific dataset
- Network data
- paths
- Spatial data
- shape
Practice Analysis!
This post is licensed under CC BY 4.0 by the author.