Post

4. Task Abstraction

4. Task Abstraction

Why abstract Task?

domain-specific 한 방법보다는 abstract 하게 task를 고려해야한다.

→ 그렇지 않으면, 도메인마다 너무 task가 달라짐.

Actions

  • High-level: Analyze
  • Mid-level: Search
  • Low-level: Query

hierarchical하게 나눠짐. 각 수준에 따른 선택은 독립적이며, 모든 action은 각 3개의 수준에서 설명가능하다.


High-level: Analyze

Consume

(1) Discover

  • Find new knowledge that is not previously known
    • generate new hypothesis, or verify existing hypothesis.
  • For Scientific inquiry

(2) Present (=explain)

  • The communication of information that is already understood (보고용)
  • e.g. Infographic
  • Output of discover → input of present

(3) Enjoy

  • Motivated by user enjoyment
  • Casual

Produce

(1) Annotate (=tag)

  • attaches temporary info

(2) Record

  • save or capture as persistent

(3) Derive (=transform)

  • To produce new data elements based on existing elements
  • Changing type of data (aggregation)
  • transform with additional info
  • using arithmetic/statistic/logical operations

→ Do not draw what you are given


high level을 수행하려면 먼저 search를 수행해야함

 Target KnownTarget Unknown
Location KnownLookupBrowse
Location UnknownLocateExplore

Low-level (Query)

target을 search를 통해 찾았다면, QUERY해야힘.

ex. 선거 결과

(1) Identify

  • 서울 관악구의 선거 결과 확인

(2) Compare

  • 서울 관악구와 동작구의 결과 비교

(3) Summarize / Overview

  • 전체적인 투표 결과 분포 확인

Targets

All-data level

(1) Trends (=patterns)

  • high-level pattern
  • increase, decrease…

(2) Outliers

(3) Features

  • Particular structures of interest
  • Task-dependent definition
    • e.g. clusters

Attribute Level

(1) One attribute

  • Individual values
  • extremes

(2) Multiple attributes

  • Dependency (인과관계)
    • association
  • Correlation (상관관계)
  • Similarity

For specific dataset

  • Network data
    • paths
  • Spatial data
    • shape

Practice Analysis!

This post is licensed under CC BY 4.0 by the author.